Cryptanalysis of a Certificateless Signature Scheme without Bilinear Pairings

Kuo-Hui Yeh¹, Kuo-Yu Tsai², Chuan-Yen Fan³

¹Department of Information Management, National Dong Hwa University, Hualien 97401, Taiwan, R.O.C.
²Department of Management Information Systems, Hwa Hsia Institute of Technology, New Taipei City 235, Taiwan, R.O.C.
³Department of Information Management National Taiwan University of Science and Technology, Taipei 10607, Taiwan, R.O.C.

¹khyeh@mail.ndhu.edu.tw; ²KuoYu.Nicklas.Tsai@gmail.com; ³kynwu.tw@gmail.com

Abstract

During these years, the research field of certificateless signature (CLS) scheme without bilinear pairings is promptly investigated as the key escrow problem in identity-based cryptography can be solved via such concept. In this paper, we demonstrate that a certificateless signature scheme proposed by Gong and Li cannot fulfill its security claims. The authors argued that their proposed certificateless signature scheme is able to resist to the super adversary. However, this security argument can be improved. We present a series of attack processes to point out that Gong and Li’s scheme is insecure against a super type I adversary.

Keywords: certificateless cryptography; digital signature; bilinear pairings; cryptanalysis

1. Introduction

In traditional public key cryptography, signature schemes allow a signer to sign a message with his/her private key to guarantee non-repudiation property (and more). However, each signature activity must accompany with corresponding certificates to complete. In order to solve the certificate management problem, Shamir [8] introduced a concept of identity-based cryptosystem. In such approach, every user does not have an explicit public key as before. The public key is replaced by his/her publicly available identity information, which can uniquely identify him/her and can be undeniably associated with him/her. The corresponding private key is computed from a one-way trapdoor function of some privileged information known only to the system authority, such as key generation center (KGC). Compared to certificate-based cryptosystem, identity-based cryptosystem does not require extra effort and information for users to validate the authenticity of public keys.

Based on the ideas of self-certified cryptosystem, Al-Riyami and Paterson [6] proposed an approach in 2003, namely certificateless public key cryptography (CL-PKC). In this approach, KGC generates partial private key, each user then generates his/her private key and public key using user’s secret value and partial private key. This concept was to oppose to KGC having access to each user’s private key in identity-based approach and was the absence of digital certificates and their important management overhead. However, CL-PKC approach is insecure against to type I adversary [9]. In 2004, Yum and Lee [13] proposed another CLS scheme. Nevertheless, Hu et al. [11] pointed out that Yum and Lee’s CLS protocol cannot resist to type I adversary. Later, Li et al. [12] and Gorantla et al. [10] presented CLS schemes using bilinear pairings, respectively. Unfortunately, these schemes require heavy operation of bilinear pairing on signature verification. Therefore, the development of CLS scheme without bilinear pairings is promptly investigated in recent years.

In 2011, He et al. [3] demonstrated an efficient CLS scheme which does not adopt the technique of bilinear pairings. Without the heavy computation cost from bilinear pairings, the efficiency of He et al.’s CLS scheme is better than previous CLS protocols. Later, a variant of such CLS concept is adopted in the authors’ another study involved with authenticated key agreement [4]. In 2012, however, Tian and Huang [5] and Tsai et al. [2] both presented that He et al.’s CLS scheme is vulnerable to a type II adversary who is able to access the master secret key of KGC. Recently, Gong and Li [1] proposed a CLS scheme without bilinear pairings. The authors claimed that their proposed scheme is secure against the super adversary. Nevertheless, the security claim is not true. In this paper, we will demonstrate that Gong and Li’s CLS scheme cannot fulfill their claimed security robustness, i.e. resistance to the super adversary.
2. Preliminary

2.1 Elliptic Curve

Let the notation E/F_p denote an elliptic curve E over a prime finite field F_p, defined by an equation $y^2 = x^3 + ax + b$, where $a, b \in F_p$ are constants such that $\Delta = 4a^3 + 27b^2 \neq 0$. All points $P = (x, y)$ on E and the infinity point O forms a cyclic group G under the operation of point addition $R = P + Q$ defined according to a chord-and-tangent rule. In particular, we define $tP = P + P + \ldots + P$ (t times) as scalar multiplication. Note that P is a generator of G with order n.

2.2 The Overview of Certificateless Signature Scheme

According to the study [6], two types of CLS scheme, denoted as CLS and CLS', exist. A normal CLS scheme consists of seven phases, i.e. Setup, Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key, Set-Public-Key, Sign and Verify. We briefly review each phase as follows.

- **Setup:** With the security parameter k, KGC generates a master secret key mk, a corresponding master public key P_{pub} and the public parameters $params$.
- **Partial-Private-Key-Extract:** With the master secret key mk, the public parameters $params$ and the user i’s identity ID_i, KGC generates a partial secret key D_i for the user i.
- **Set-Secret-Value:** The user i randomly selects a value $x_i \in Z_n^*$ as his/her secret.
- **Set-Private-Key:** With the public parameters $params$, the user i’s partial private key D_i and his/her chosen secret value x_i, the user i generates a full private key. Note that in some studies, Set-Private-Key phase may be integrated with Set-Secret-Value phase.
- **Set-Public-Key:** With the public parameters $params$ and the user i’s secret value x_i, the user i outputs his/her public key PK_i.
- **Sign:** With any target message m, this phase outputs a signature $\sigma_i = (R_i, T_i, \tau_i)$ on m.
- **Verify:** With the signature $\sigma_i = (R_i, T_i, \tau_i)$ of the message m, this phase returns 1 if $\sigma_i = (R_i, T_i, \tau_i)$ is valid. Otherwise, it returns 0.

Furthermore, the other kind of certificateless signature scheme CLS' also possesses seven phases: Setup, Partial-Private-Key-Extract, Set-Secret-Value, Set-Private-Key, Set-Public-Key, Sign and Verify. The main difference between CLS and CLS' is in the procedure of Partial-Private-Key-Extract phase which additionally requires the user i’s public key as an input.

2.3 Adversaries against Certificateless Signature Scheme

In general, there exist two categories of adversaries against certificateless signature scheme, i.e. type I and type II Adversaries [6]. The type I adversary models an outside adversary who does not know the master secret key of KGC; however, the type I adversary is able to replace any entity’s public key with specific values chosen by the adversary itself. The type II adversary models a malicious KGC who is allowed to access to the master secret key of KGC. Nevertheless, the type II adversary cannot replace the public keys of other entities. In addition, based on the security model defined by Huang et al. [7], type I and II adversaries against CLS schemes can further be classified into three categories: normal, strong and super levels. A normal-level type I (and II) adversary only has the ability to learn valid signatures. A strong-level type I (and II) adversary is able to replace a public key to forge a valid signature when the adversary possesses a corresponding secret value. A super-level type I (and II) adversary is able to learn valid signatures for a replaced public key without any submission.

Here, we only present the definition of the super-level type I adversary j which will mainly be involved with the cryptanalysis of Gong-Li’s CLS scheme [1]. The game is performed between a challenger C and a super-level type I adversary j for a CLS scheme as follows.

Initialization: C runs Setup phase and generates a master secret key mk, public system parameters $params$. Next, C keeps mk and gives $params$ to the adversary j.

Queries: The adversary j can adaptively issue the following oracle queries [1, 3], i.e. ExtractPartialPrivateKey(i), ExtractSecretValue(i), RequestPublicKey(i), ReplacePublicKey(i), and Sign(i, m), to C.

Output: Eventually, the adversary j outputs (ID_i, m_i, σ_i). The adversary j wins the game if

1. **ExtractPartialPrivateKey**(t) and Sign(t, m_i) queries have never been queried.
2. $1 \leftarrow \text{Verify}(params, m_i, PK_i, P_{pub}, \sigma_t)$. Note that PK_i and P_{pub} may be replaced by the adversary j.

Definition: A CLS scheme is existentially unforgeable against a super-level type I adversary, if for any polynomially bounded super-level Type I adversary j, $\text{Suc}j$ is negligible, where $\text{Suc}j$ is the success probability that j wins in the above game.

3. Cryptanalysis of Gong-Li’s CLS scheme

In this section, we briefly review Gong et al.’s CLS schemes [1]. Then, the cryptanalysis of Gong-Li’s CLS scheme is demonstrated.
3.1 Review of Gong-Li scheme

Gong-Li’s CLS scheme, short for Gong-Li scheme, consists of six steps, i.e. Setup, PartialPrivateKeyExtract, SetSecretValue, SetPublicKey, Sign and Verify. The detail of these steps is described as follows.

Setup: Given k, KGC generates the system parameters and the master key via the following computations.

1. KGC generates a group G of elliptic curve points with prime order n and determines a generator P of G.
2. KGC chooses the master key \(mk = s \in Z_n^* \) and three secure hash functions \(H_1, H_2 \) and \(H_3 \), where \(H_1 : \{0,1\}^* \times G \rightarrow Z_q^* \), \(H_2 : \{0,1\}^* \times G \times G \rightarrow Z_q^* \), and \(H_3 : \{0,1\}^* \times \{0,1\}^* \times G \times G \rightarrow Z_q^* \). Next, KGC creates the master public key \(P_{pub} = s \cdot P \).
3. KGC publishes \(\text{params} = \{G, P, P_{pub}, H_1, H_2, H_3\} \) as system parameters, and secretly keeps the master key \(mk \).

PartialPrivateKeyExtract: Given \(\text{params}, mk \), and user \(i \)'s identity \(ID_i \), KGC generates a random number \(r_i \in Z_n^* \), and calculates \(R_i = r_i \cdot P \), \(h_i = H_1(ID_i, R_i) \) and \(s_i = r_i + h_i \cdot s \mod n \). After that, KGC returns the partial private key \(D_i = (s_i, R_i) \) to the user. The validity of \(D_i \) can be realized via the examination of the equation \(s_i \cdot P = R_i + h_i \cdot P_{pub} \).

SetSecretValue: Given \(\text{params} \), the user \(i \) with identity \(ID_i \) picks a random number \(x_i \in Z_n^* \) as his/her secret value.

SetPublicKey: Given \(\text{params} \) and \(x_i \), the user \(i \) computes \(PK_i = x_i \cdot P \) as his/her public key.

Sign: Given \(\text{params}, D_i, x_i \), and a message \(m \), the user \(i \) generates a signature of \(m \) through the following steps.

1. Compute \(T_i = t_i \cdot P \) with a newly generated random number \(t_i \in Z_n^* \).
2. Compute \(k_i = H_2(ID_i, PK_i, R_i, P_{pub}) \), \(l_i = H_3(m, T_i, ID_i, PK_i, R_i, P_{pub}) \) and \(\tau_i = t_i + l_i(k_i \cdot x_i + s_i) \mod n \). Note that in Gong-Li’s paper, the original equation of \(l_i \) is \(l_i = H_3(m, T_i, ID_i, P_i, R_i, P_{pub}) \); obviously, there exists a typo on the value \(P_i \) (actually, it should be \(PK_i \)) within the equation \(l_i \).
3. Return \(\sigma_i = (R_i, T_i, \tau_i) \) as the signature of the message \(m \).

Verify: Given \(\text{params}, ID_i, PK_i, m \) and \(\sigma_i = (R_i, T_i, \tau_i) \), the verifier exploits the following steps to verify the validity of \(\sigma_i \).

1. Compute \(h_i = H_1(ID_i, R_i) \), \(k_i = H_2(ID_i, PK_i, R_i, P_{pub}) \) and \(l_i = H_3(m, T_i, ID_i, PK_i, R_i, P_{pub}) \).
2. Verify whether the equation \(\tau_i \cdot P = T_i + l_i(k_i \cdot PK_i + R_i + h_i \cdot P_{pub}) \) holds.

\[
\begin{align*}
\tau_i \cdot P & = T_i + l_i(k_i \cdot PK_i + R_i + h_i \cdot P_{pub}) \\
& = T_i + l_i(k_i \cdot PK_i + R_i + h_i \cdot P_{pub}) \\
& = T_i + l_i(k_i \cdot PK_i + R_i + h_i \cdot P_{pub})
\end{align*}
\]

3.2 Cryptanalysis of Gong-Li scheme

The Gong-Li scheme is vulnerable to a type I adversary with the following attack procedures. Suppose there exists a malicious type I adversary \(j \) which intends to forge a valid signature \(\sigma'_i = (R'_i, T'_i, \tau'_i) \) on the message \(m' \) chosen by the adversary \(j \).

1. The adversary \(j \) eavesdrops a valid signature \(\sigma_i = (R_i, T_i, \tau_i) \) with message \(m \) issued by the user \(i \) from any previous session, where \(T_j = t_j \cdot P \), \(R_j = r_j \cdot P \) and \(\tau_j = t_j + l_j(k_j \cdot x_j + r_j + h_j) \).
2. The adversary \(j \) performs the following computations to forge a valid signature on a chosen message \(m' \). Since the adversary \(j \) is a Type I adversary, \(j \) can replace any entity’s public key including KGC’s public key.

a. Known values retrieved from previous session:

\[
\begin{align*}
R_i &= r_i \cdot P \quad , \quad T_i = t_i \cdot P \quad , \quad PK_i = x_i \cdot P \quad , \\
P_{pub} &= s \cdot P \quad , \quad h_i = H_1(ID_i, R_i) \quad , \\
k_i &= H_2(ID_i, PK_i, R_i, P_{pub}) \quad , \\
l_i &= H_3(m, T_i, ID_i, PK_i, R_i, P_{pub}) \\
\end{align*}
\]

b. The adversary \(j \) chooses a random number \(t'_j \in Z_n^* \) and derives \(T'_j = t'_j \cdot P \).

\[
\begin{align*}
R'_i &= (l'_j)^{-1} T'_j + R_j \quad , \quad h'_i &= H_1(ID_i, R'_i) \quad , \\
P_{pub}' &= (h'_i)^{-1} h_i P_{pub} \\
k'_i &= H_2(ID_i, PK_i, R'_i, P_{pub}') \quad , \\
l'_i &= H_3(m', T'_i, ID_i, PK_i, R'_i, P_{pub}') \\
\end{align*}
\]

c. Now, the adversary \(j \) can forge a valid signature \(\sigma'_i = (R'_i, T'_i, \tau'_i) \) on the chosen message \(m' \). Note that the secret \(x_i \) can be retrieved via \(\text{ExtractSecretValue}(i) \) query.
i. Compute $\tau_i - l_j k_j x_i = t_i + l_j (r_i + h_i s)$.

ii. $t_i + l_i (r_i + h_i s)$ multiplies by $(l_i')^{-1}$, i.e. $(l_i')^{-1} \cdot (t_i + r_i + h_i s)$.

iii. Add t_i' and $l_i' k_i' x_i$ on the result from (ii).

$$t_i' + (l_i')^{-1} \cdot (t_i + r_i + h_i s) + l_i' k_i' x_i$$

$$= t_i' + (l_i')^{-1} \cdot [k_i' x_i + (l_i')^{-1} \cdot t_i + r_i] + h_i s$$

iv. Let τ_i' be the result from (iii).

$$\tau_i' = t_i' + (l_i')^{-1} \cdot [k_i' x_i + (l_i')^{-1} \cdot t_i + r_i] + h_i s$$

d. With the following equation, it is obvious that the forge signature $\sigma_i' = (R_i', T_i', \tau_i')$ for the chosen message m' is valid, where

$$R_i' = (l_i')^{-1} T_i + R_i,$$

$$T_i' = t_i' + P$$ and

$$P_{pub}' = (h_i')^{-1} h_i P_{pub}.$$

4. Conclusions

In this paper, we have demonstrated that Gong and Li’s CLS scheme is vulnerable to a malicious attack launched by a super type I adversary. This security vulnerability results from the weak connection among $T_i, l_i k_i P_{pub}, R_i$ and $h_i P_{pub}$ within the signature $\sigma_i = (R_i, T_i, \tau_i).$ For this reason, Gong and Li’s CLS scheme cannot fulfill the argued security claim, i.e. resistance to the super adversary.

5. Acknowledgment

The authors gratefully acknowledge the support from Taiwan Information Security Center (TWISC) and National Science Council, Taiwan, under the Grants Numbers NSC 102-2218-E-259-004, NSC 102-2218-E-146-002 and NSC 102-2218-E-011-012.

6. References

DOI: 10.1002/dac.2388, Article first published online: 27 June 2012.

